Meet our Students

Ida Ahmad

ida-ahmadModelling the chemical and physical degradation of plastic objects in museum collections using a System Dynamics approach

UCL Institute for Sustainable Heritage / UCL Chemistry / Tate / Conservation by Design (CXD)

Plastics represent one of the most vulnerable groups of materials in museum collections. As museums collect an increasing number of plastic or plastic-containing objects, the task of conserving these artefacts is a growing problem. Individual mechanisms which contribute to plastic degradation are well-documented, but it is poorly understood how different factors interact with each other. This project aims to understand these interactions using System Dynamics, a holistic approach which will mathematically model the object and its environment as a system. The research will help conservators make better, evidence-based decisions on how to conserve plastic artefacts, as well as developing a new way of understanding material degradation which can have applications in fields like medicine and defence.
This work is part of the ERC Starting Grant funded project “COMPLEX: The Degradation of Complex Modern Polymeric Objects in Heritage Collections: A System Dynamics Approach”.

Panagiotis Andrikopoulos

Characterisation and implementation of new illuminants and their effect on the museum visitor.

UCL Institute for Sustainable Heritage / UCL Institute of Ophthalmology / Lighting Laboratory National Technical University of Athens / ACT Lighting Design / OSRAM

The latest advancements in lighting technology have created new challenges and opportunities. The project sets to characterise new illuminants of spectrally fine-tuned artwork lighting systems sources in terms of colour appearance and preference for the human observer.

Laura Arcidiacono

laura-profileNovel neutron techniques for the non destructive and non invasive analysis of archaeological gold

UCL Institute of Archaeology / Center NAST, University of Rome Tor Vergata / Centro Fermi / Gold Museum, Bogotá

The ability of neutrons to penetrate thick layers of materials, without substantial attenuation, makes them an ideal probe to study the elemental and phase composition of bulk materials, in a totally non-destructive and non-invasive manner. Neutron techniques are increasingly being utilized for quantitative, non-invasive analyses in the fields of archaeology and cultural heritage and applied to a large variety of objects and materials including metals, ceramics, bones and other materials. The potential of neutron-based techniques for the sourcing of archaeological gold, however, has not been explored systematically. Laura will develop a novel neutron technique for performing Prompt Gamma Activation Analysis in time of flight in order to assess the provenance of gold artefacts from the pre-Hispanic period in South America. Determining the origins of the gold employed by different cultures is a fundamental foundation to make inferences about the relationships between different communities and their natural environment, as well as to reconstruct trade and interaction among human groups.

Cecilia Bembibre

Smells of Heritage

UCL Institute for Sustainable Heritage / The National Trust / Odournet

Smells affect the way we experience the world and can carry important information about places and objects. This project researches the identification and documentation of heritage smells, conducting VOC detection and analysis using solid-phase micro-extraction plus gas chromatography/mass spectrometry and gas chromatography Time of Flight Analysis (GC-TOF) with olfactometric detection (GC-O). Trained and untrained evaluation panels are also used to assess human perception of smells.

A number of case study aromas from Knole House (National Trust) will be presented to the public to explore how historic odours affect the ways in which people interact with heritage sites.

Follow the progress on the project on Twitter: @ucqbbem

Alexandra Bridarolli

Nanoscale strategies using nanocellulose for the consolidation of cellulosic materials

UCL Institute for Sustainable Heritage / UCL Eastman Dental Institute / Birckbeck, University of London / Aurelia Chevalier / Zentrum für Bucherhaltung GmbH

In painting conservation, the consolidation of canvases is still a field which has seen little development despite the known risks involved. Moreover, most current canvas conservation approaches may no longer be suitable for modern paintings. Recent developments in functionalized biopolymers have given rise to possible alternatives to actual conservation products.  During her PhD, Alexandra will participate to the development of novel nanocellulose treatments for the consolidation of cellulosic materials. Her work will be more specifically focused on painting canvas of the 20th century.

This PhD is carried out in the framework of the newly-launched European interdisciplinary program NANORESTART.

Natalie Brown

Collection Surveys as Part of Library Document Supply Chain

Lichtblau e.K. /  Bodleian Library / Library of Congress

The project aims to better understand material change within large library collections and assess how non-destructive surveying tools (NIR) could be most straightforwardly applied, in the context of document delivery to understand the ‘health’ of the library’s collection.

Krisangella Sofia Murillo Camacho

User-driven Energy Efficiency in Heritage Buildings

National Council for Science and Technology (CONACYT) / Secretary of Energy (SENER) / National Autonomous University of Mexico (UNAM) / National Institute of Anthropology and History
In the conservation and adaptation of heritage buildings, the challenge lies in finding the most suitable uses for historic buildings while preserving the unique characteristics of the era they represent. In the case of buildings with historical value, energy efficiency is a social, economic, environmental and political issue that should have a high-level of visibility. In view of this, my study will try to give a solution to the complex system of users, heritage and energy efficiency. The methodology employed for this research is socio-technical as it aims to collect, analyse and synthesise through system dynamics social data related to residents’ attitudes towards heritage values and energy efficiency alongside physical data related to the environmental impact of such decisions on the energy performance and condition of the building itself. It will examine the gap between policy, practice and users’ behaviours. In addition to the academic input, my proposed research will benefit both the residents who will be involved in the process and heritage and energy efficiency policy-makers.

Carolien Coon

Photo-degradation of polymer-based rapid-prototype materials and their conservation through nanotechnology-based treatments

Centre for Colloid and Surface Science, University of Florence / Plowden and Smith Ltd / National Museum of Denmark / UCL Eastman Dental Institute

3D prints are entering museum collections as artists explore new creative possibilities. Similarly, museums realise the potential of Rapid Prototype (RP) technology for public engagement and conservation. Some polymeric RP materials have shown to be unstable, presenting an un-researched conservation challenge. The degradation mechanisms of RP polymers are investigated and the effectiveness of novel nanomaterials for plastics conservation assessed. In addition, a method (microfading) to rapidly identify photosensitive RP objects is being developed.

Cristina Duran Casablancas

christina-duran-casablancas-2Preservation management modelling in archive and library collections

UCL Institute for Sustainable Heritage / Nationaal Archief, The Netherlands / Helicon Conservation Services

Libraries and archives are responsible for the management of collections in order to ensure access for present and future generations and its sustainability. In the interest of these two goals, institutions face the challenging question of determining to what extent preservation actions are beneficial in the context of their specific collections. This project explores the use of System Dynamics and related mathematical modelling techniques to evaluate the effect of preservation actions during the lifetime of collections by approaching collection management as a complex system. If single preservation measures are put in the broader context of collection management, then questions emerge such as: are there management decisions which may have contra-intuitive and maybe unintended consequences? Do short and long term consequences of actions differ from each other?

Morena Ferreira

morena-profile-e1484129632474-300x255Micro-environmental control for the mitigation of mould growth in indoor heritage

UCL Institute for Sustainable Heritage / UCL Chemical Engineering / Tobit Curteis Associates / National Trust

Mould and moisture related issues are common to many historic buildings around the world. Mould prevention involving environmental management tends to focus on controlling ambient relative humidity. However, this project explores the moisture present on the surface of substrates as a crucial parameter influencing mould development. The aim of this project is to research the impact of air movement on mould development by changing the moisture available on surfaces, and thus developing a preventive measure focused on microclimates with high risk of mould development.

Lucie Fusade

Pointing mortars for controlling driving-rain ingress in damp towers

University of Oxford, School of Geography and the Environment / Historic England / Building Conservation Research Team / The Churches Conservation Trust

Looking at traditional materials, such as lime mortar, this research aims to design a repair pointing mortar which can mitigate driving-rain ingress to historic buildings. The research focuses on characterising the physical and chemical roles of additives, such as wood ash and crushed stones, in order to enhance the properties of lime mortars.

Isabella del Gaudio

isabella-del-gaudio-1Plastics in Museum Collections – a study of their chemical and physical degradation using a System Dynamics approach

UCL Institute for Sustainable Heritage / UCL Chemistry / Museum of London / Lacerta Technology Ltd

Plastics represent a challenging material among perfusionists in the conservation field, they degrade faster than classic heritage materials and their decay processes are still not fully understood. In fact, the COMPLEX project would like to create inter-connecting interactions between physical-chemical material components and environmental factors using a System Dynamic Model. In this research, both non-destructive and destructive techniques will be used in situ (at the Museum of London) on natural aged samples and in laboratory (at UCL) on sacrificable and artificially aged materials.

Richard Grove

Improving the evaluation of conservation treatments for deteriorating sandstone in built heritage

School of Geography and the Environment, University of Oxford / Getty Conservation Institute / TQC

Richard’s project is based upon the monitoring of treated Sandstone in heritage settings. Sandstone buildings and monuments form a large proportion of the world’s built heritage, and can be some of the more vulnerable structures to environmental and human inputs. Efforts have been made over the last decades to develop consolidants and stabilising treatments for exposed or degraded stonework, but little is understood about their effectiveness and what impacts they may have on the treated material. This project will combine laboratory and field based assessment to design a range of evaluative techniques for use in practical conservation regimes.

Sarah Hunt

SH_PhotoMary Rose: Assessment of Environmental Risks during Display

UCL School of Pharmacy / UCL Institute for Sustainable Heritage /
National Physical Laboratory / TA Instruments / Mary Rose Trust

This project will focus on measurement and quantification of pollutants in display environments at the Mary Rose Museum and their impact on the stability of the artefacts. This includes pollutants such as NO2, H2S, O3 and organic acids, which represent unknown risks to the unique artefacts.


Cerys Jones

An optimized system for multispectral imaging of documentary material

UCL Medical Physics and Bioengineering / British Library / The London Metropolitan Archives / R.B.Toth Associates

Working with conservators and archivists from the British Library and London Metropolitan Archives, the aim of this PhD is to produce a pipeline for multispectral imaging of documentary material in the heritage sector. This will identify the optimum approaches to acquiring multispectral imaging data and enable archivists, conservators and scholars to produce multispectral images of historical manuscripts without the need of a specialist imaging scientist.

Mark Kearney

From Samples to Complex Objects: Detecting Material Degradation in Plastic Artworks

UCL Institute for Sustainable Heritage / UCL Chemistry / Tate / Arkema

Research into the decay of modern materials found in heritage environments is a rapidly growing area within heritage science. This is due to the rapid and often catastrophic decay suffered by many commonly found polymers. Consequently, the need for accurate and reliable conservation treatments or monitoring programs are much needed. This project will exploit the information gained from the volatile organic compounds (VOCs) naturally emitted from polymers with the aim to detect and monitor the decay of 3D artworks on open display or housed in storage environments. Laboratory work (both at UCL and Arkema) will focus on developing an experimental method using solid-phase micro extraction gas chromatography mass spectrometry (SPME-GCMS); this methodology will then be implemented in the real-world heritage environment of the project’s heritage partner Tate.

Rose King

rose-king-profile-picture-e1483546164835-300x255-2The role of plasticiser loss in the degradation of plastic objects in heritage collections

UCL Institute for Sustainable Heritage / Smithsonian Museum Conservation Institute / Dow Chemical

In collaboration with the Smithsonian Museum Conservation Institute and Dow, this project seeks to use imaging and spectroscopic techniques to understand and quantify the dynamic processes of degradation caused by the loss of plasticisers from plastic objects in heritage collections. By exploring the relationships between the degree and rate of plasticiser loss, environmental parameters and the object’s material properties, this research aims to inform preventive conservation and storage conditions, with a particular focus towards two common historic plastics; PVC and Cellulose Acetate.

Gavin Leong

gavin-leongWhat lies beneath? High resolution imaging of lichen‐covered surfaces at Stonehenge

University of Brighton, School of Environment and Technology / Hexagon Manufacturing Intelligence / AICON 3D systems GmbH / Breuckmann GmbH / Historic England

Following a landmark laser and photogrammetric survey of the stones at Stonehenge in 2011/12, the number of known prehistoric axe-head carvings on Stonehenge increased by 71. However, attempts at digitally removing lichen from the laser scan have largely been unsuccessful, as they also removed evidence for stone-working. Since dense coverage of fruticose lichen prevented examination of 23% of the stone surface, concern has been raised that areas of stone-working and prehistoric carvings could currently be masked by lichen.

Gavin’s project will develop machine learning, machine vision and, among others, pulsed terahertz imaging techniques to non-invasively unmask Stonehenge, and potentially reveal archaeological information beneath the lichen.

Yun Liu

Online Collections Modelling Tool

University College London / Smithsonian Museum Conservation Institute / The National Archives / Lichtblau e.K.

This research project will develop an online platform to model and examine heritage management scenarios. This will offer an opportunity for interaction, creation, communication, and sharing of knowledge, bringing significant potential benefits to the public, the practitioners, and the experts and academics in heritage science and conservation.


Hend Mahgoub

HM_PhotoQuantitative Chemical Hyperspectral NIR Imaging of Historical Cellulosic Materials

UCL Institute for Sustainable Heritage / University of Barcelona / Rijksmuseum / Gilden Photonics Ltd / ZFB GmbH

The overall aim of the project is to explore the analytical robustness of chemical imaging with a focus on the benefits and limitations of quantitative chemical imaging of cellulosic heritage materials. This project has a great potential to explore the spatial distribution of an object’s chemical composition and condition in addition to the study of the effect of the conservation treatments which will have an impact on the management and preservation plans of collections.

This PhD is carried out in the framework of the newly-launched European interdisciplinary program NANORESTART.

Ian Maybury

IM_PhotoHyperspectral imaging in Heritage: From Books to Bricks

School of Geography and the Environment, University of OxfordUCL Centre for Digital HumanitiesBodleian LibraryHeadwall Photonics

Ian’s project investigates the use of hyperspectral imaging (HSI) in a heritage context learning how to best use the equipment to extract information such as hidden text, relief details, the presence of organic growth, and signs of deterioration. HSI will be applied to books/papers, museum objects, and architectural/archaeological heritage materials.


Antanas Melinis

antanas-melinis-1Conditions for the Safe Storage of Early Glass

UCL Institute of Archaeology / English Heritage / Glashütte Lamberts

The project is centred on the investigation of fragile glass artefacts in the English Heritage collections with the perspective of providing more advanced guidelines for the sustainable preservation of vitreous materials in heritage institutions.
Most pre-modern glass actively absorbs water from the environment while losing its structural alkaline components in a parallel leaching process, which weakens the main silica network. Therefore, excessive fluctuations in the relative humidity (RH) of the surroundings as well as rapid drying can be detrimental to the structural integrity and aesthetic value of the objects. Hence, the goal of my research is to find the optimal storage conditions for glass through the identification of its most vulnerable types and chemical compositions, their industrial reproduction, artificial corrosion in high- humidity conditions, and eventual acoustic emission-aided identification of the minimal RH that would halt both crizzling (disfiguring surface cracking due to moisture loss) and further hydration.

Martin Michette

Reigate Stone at the Tower of London: Developing preventive conservation strategies for problem stones

School of Geography and the Environment, University of OxfordHistoric Royal PalacesCarden & Godfrey Architects

Reigate Stone was used extensively in South-East England between the 11th and 16th Centuries,  contributing to a legacy of medieval heritage that ranges from parish churches to royal palaces.  This project is part of ongoing research being conducted by Historic Royal Palaces into the  nature of the stone; assessing how and why condition varies across different locations and  developing effective conservation strategies accordingly. The aim is to evaluate the success of  previous treatments and propose holistic, preventive strategies. These will be based on an  increased understanding of decay mechanisms and make full use of novel techniques and technologies.

Dzhordzhio Naldzhiev

dzhordzhio-profile-picture-e1483547031252-300x255-2Novel Retrofit Technology Incorporating Robots for Lower Energy Healthy Buildings

UCL Institute for Environmental Design and Engineering / UCL Institute for Sustainable Heritage / Q-Bot / Historic England

More than 86% of the existing residential building stock in the UK has been built pre 1990. Before 1985, dwellings in the UK were not required to have any insulation in the walls or floors in order to achieve Building Regulations compliance. In order to address this urgent demand for retrofittng the existing stock, novel technologies have been recently adopted by applying spray foam insulation (SPF) to the underside of suspended timber floors through the use of robots. The potential for energy savings, reducing fuel poverty and carbon emissions is high, although the consequences to the indoor environmental conditions would need to be further examined. The research project aims to identify and quantify the interrelationship between energy saving potential, VOCs associated with the application, curing and usage of SPF and their potential effect on human health and historic wooden floors. Through experimental work and long term monitoring procedures, the research will be able to provide an overview of the overall impact of spray foam insulation on the environmental and energy performance of retrofitted historic buildings.

Morana Novak

morana-novak-1Thinking out of the box – modelling preventive conservation benefits of boxes

UCL Institute for Sustainable Heritage / The London Metropolitan Archives / Conservation by Design (CXD)

It is a common, cost-effective and environmental friendly practice in conservation field to use boxes for protection of valuable objects against external factors, e.g. T/RH flunctuations, light, pollutants, pests, and also from internal factors (degradation products, pollutants that are emitted by object itself). However, it is still not known what type of boxes (standard cardboard boxes or new materials that are used in field of smart packaging) offer best protection for different types of heritage objects (paper, plastics) and in what environmental conditions. This project will implement different methods such as environmental monitoring, modelling, laboratory and accelerated ageing experiments to answer several research questions: what new materials exist that could improve protection properties of boxes, what is the role of boxes in catastrophic events, can protective properties of boxes be modelled, and what kind of chemical protection do boxes offer (VOC absorption, reduction of T/RH flunctuations, antifungal activity).

Scott Allan Orr

Wet walls: Developing 4D moisture survey techniques for stone masonry

School of Geography and the Environment, University of Oxford / Historic Environment Scotland / Consarc Design Group

Scott’s current research applies a range of non-destructive testing methods on historical stone masonry to develop 4D moisture monitoring techniques. More broadly, he is interested in considering built heritage as complex chemical systems to understand their physical transformation in response to environmental change, in order to inform policy development and conservation practice.

Danae Phaedra Pocobelli

danae-profile-picture-1-e1483547088789-300x255Building Information Models from Monitoring and Simulation Data in Heritage Buildings

UCL Institute for Sustainable Heritage / UCL Department of Civil, Environmental and Geomatic Engineering / Historic England
/ English Heritage / Plowman Craven
This project will investigate the use of Building Information Modelling (BIM) for heritage buildings. As BIM has been developed for new buildings, the use of this tool in the heritage field is still challenging. Specifically, Danae will focus on implementing BIM with a forecasting model connecting moisture ingress and façade weatherings. Using damage function, wind-driven rainfall models and the sharp front theory, a model predicting façade alterations will be produced, narrowing on one specific building material. The algorithm of a heritage-specific plug-in will then be coded to be possibly implemented into BIM.

Anna Pokorska

Spectrally dependent light sensitivity of modern materials

UCL Institute for Sustainable Heritage / Victoria and Albert Museum (V&A) / Philips

This exciting and highly interdisciplinary project aims to probe the light sensitivity of modern materials more deeply and specifically to understand how the light degradation of modern polymers is spectrally dependent. An experimental degradation chamber with a spectrally-adjustable light source will be constructed and the effect of the spectrum of a light source on material degradation will be studied.

Elia Quijano Quinones

Analysing the social impact of community-based heritage conservation: the case of contemporary Mayan communities in Yucatan, Merida.

UCL Institute for Sustainable Heritage / National Institute of Anthropology and History, Section of Conservation and Restoration, Yucatan Centre
There is increasing recognition of the role that cultural heritage plays in the creation of living environments that positively affect people’s well-being. However, there is also an identified issue regarding the measurement of the social performance of heritage conservation which relies on the identification of intangible data. Thus, the aim of this project is to develop a methodological approach to investigate the degree to which current policies regarding the community-based approach in heritage conservation can enhance social capital. For this aim, this research will use three contemporary Mayan communities in Yucatan, Mexico as a case study, which has participated in heritage conservation projects implemented by the National Institute of Anthropology and History (INAH). A fourth community with no previous history of participation in heritage conservation will be used as a control case. This research will apply a mixed methodology with a sequential design that merges qualitative research with statistical analysis, where indicators of impact would be proposed and implemented in the design of a measuring tool (survey). This research is relevant in the SEAHA strands of data to knowledge’ and ‘knowledge to enterprise’, as it will result in new data that can be used to improve engagement and public services through a mixed methodology. In this research, the application of advanced statistical methods is critical for determining the social performance of the community-based approach in heritage conservation. The practical outcome of this project will be the methodology itself, which could be used to assess the social impact of conservation projects elsewhere.

Jennifer Richards

jennifer-profile-picture-e1483547232183-300x255Learning from nature: evaluating site-based conservation approaches to mitigating climatic risks to earthen heritage sites in N W China

School of Geography and the Environment, University of Oxford / The Getty / Dunhuang Academy

Earthen heritage sites are among the oldest types of cultural heritage sites in the world. These sites, which can be over thousand years old, are degrading rapidly and this loss of heritage is projected to increase with climate change. This project aims to address the fact that there is little consensus and a lack of long term research for earthen heritage conservation, with some conservation strategies even increasing the rate of degradation.

We will use fieldwork at the ancient city of Suoyang, located on the Silk Road in North West China, to investigate the relationship between patterns of degradation and microclimatic and environmental conditions. We will also develop a computer model to assess the benefits of natural conservation strategies such as wind breaks and vegetation cover. This research  hopes to produce a robust long term conservation strategy for this ancient site.

Pedro Rocha

pedro-profile-e1484002284666-300x255Strain modelling in historical tapestries

UCL Department of Civil, Environmental and Geomatic Engineering / UCL Institute for Sustainable Heritage / Historic Royal Palaces / IBM T.J. Watson Research Center

Historical tapestries are very complex works of art given the materials, complex structure and weaving techniques used to produce them. This project aims to understand how the exposure to indoor environmental conditions results in the structural deterioration and loss of material in tapestries. The influence of humidity and temperature on the stress and strain distribution in hanging textiles will be studied in order to inform their preservation. This project will focus on the historical textile tapestry collections at Hampton Court Palace using in situ tri-axial strain monitoring sensors to provide data to inform experimental testing and computational modelling of tapestries using the finite element method.

Betty Sacher

Lighting Policies for Collections using Microfadeometry

UCL Institute for Sustainable Heritage / Wellcome Library / Townshend & Thomas LLP

This project will explore the potential of a micro-destructive technique, microfadeometry, to develop object- and collection-specific lighting policies and could thus significantly affect exhibition guidelines in collecting institutions. The research project will address these aspects while aiming to contribute to the day-to-day decision-making of collection care specialists.

Hayley Simon

HS_PhotoCharacterising marine archaeological iron degradation and the efficacy of treatments to date: worth a shot?

UCL Institute of Archaeology / Mary Rose Trust / Diamond Light Source / Eura Conservation Ltd
Iron, if left to its own devices, corrodes. This observation may seem obvious, but it is governed by a series of complex chemical reactions. Studies have pointed towards a link between corrosion and chlorine, and current conservation methods focus on removing chlorine ions using a number of desalination techniques. Owing to the unique nature of archaeological artefacts, comparing these treatments and assessing their effectiveness has been difficult. In this project, many issues will be overcome by studying the 1,000+ examples of iron shot recovered from the wreckage of the Tudor warship the Mary Rose.

Chryssa Thoua

chryssa-thoua-e1483547542326-300x254-2Total Performance of ‘Passivhaus’ Schools – Making Heritage Schools Fit for Purpose

UCL Institute for Environmental Design and Engineering / UCL Institute for Sustainable Heritage / Architype / Historic England

A significant proportion of the school building stock in England and Wales could be considered as heritage. The challenge of reaching the Government’s target to reduce national carbon emissions by 80% compared to 1990 levels by 2050 is overwhelming, and this project addresses whether and how the Passivhaus standard could be applied to the new and existing school stock. The Passivhaus principles include: a) good levels of insulation with minimal thermal bridges, b) using passive solar gains and internal heat sources, c) excellent level of airtightness and d) good indoor air quality, provided by a whole building mechanical ventilation system with highly efficient heat recovery. This project aims to explore and compare the operational performance of contemporary schools built to the Passivhaus standard and of historic schools that are listed or with outstanding heritage characteristics, to analyse possible implications to retrofit of historic schools and to contemporary school buildings with the potential of becoming future heritage.

Vladimir Vilde

VV_PhotoComparison of painting lining methods for historic house environments

UCL Department of History of ArtUCL Institute for Sustainable HeritageEnglish HeritageLaVision

Considering the material complexity of the paintings and the various environmental context, it is necessary to evaluate correctly when a relining is required and how to optimise it. To tackle this challenge, non-invasive experiments are compulsory as sampling is not an option within the collection of English Heritage the cultural partner of this project.  Additionally equipment have to move into historical houses in order to perform analysis in the right context. The use of digital image correlation to evaluate mechanical behaviour is provided by LaVision supporting this project from an industrial perspective. The considered techniques are known in their respective field but the goal is to combine their application by developing a method on-site and in laboratory to support conservator in their decisions.

Frida Vonstad

Engineering and Archaeology in Construction and Conservation Work: Developing Interdisciplinary Techniques and Methodologies

UCL Institute of Archaeology / UCL Department of Civil, Environmental and Geomatic Engineering / ICOMOS / Archaeology South East / WSP / Ramboll

This project will explore where engineering and archaeology clashes on construction projects and attempt to find better ways of collaborating in terms of technology and methodology, looking at archaeology in context, engineering techniques and their potential for development from a conservation standpoint, and Building Information Modelling (BIM) for reduction of time and cost for archaeology and to improve conservation of finds. Through case studies carried out on archaeological and engineering construction sites the project will be very industry influenced and aim to further integrate archaeology and heritage in the construction process.

Andy Wade

andy-wade-e1485009995475-300x255Near Infrared Hyperspectral Imaging of Historic Building Materials

UCL Medical Physics and Biomedical Engineering / UCL Institute for Sustainable Heritage / Hutton & Roston / English Heritage

The pathology of historic building materials is inextricably linked to water – either its concentration or its movement. There are a number of material characterisation techniques to determine the presence of water which are mostly point-based thus, for efficient visualisation of building pathologies, an imaging technique would be welcome. Since some salts and organisms fluoresce, their detection is possible using such techniques as LIDAR and LIF. In the Near Infrared (NIR) region, some of these compounds exhibit additional peaks, and most importantly, the water absorption peak at 1900 nm becomes clearly distinguishable. This opens the possibility for NIR hyperspectral cameras to be used to image the content of water, either in its liquid form or crystal-bound, in mortars, brick, and timber. However, for quantitative measurements, suitable illumination and calibration techniques would need to be developed. This proposal will explore new methods of quantitative NIR imaging of building material pathologies and their application to historic and newer buildings.

E. Keats Webb

Integrating Spectral and 3D Imaging for Monitoring Cultural Heritage Objects

University of Brighton / Smithsonian’s Museum Conservation Institute (Washington DC) / Analytik Ltd. (Cambridge, UK)

Spectral and 3D imaging techniques are used as non-destructive and portable tools to record the condition, inform the care, and increase the understanding of objects. This research will investigate an integrated approach to spectral and 3D imaging for improved monitoring of cultural heritage objects. The research aims to acquire integrated image data, increase the reproducibility and comparability, and visualise the integrated data for interpretation, hence enhance monitoring.

Charlie Willard

charlie-willard-23D Hyperspectral Imaging of Heritage

UCL Medical Physics and Biomedical Engineering / UCL Institute for Sustainable Heritage / Camlin Group / Rijksmuseum

Many art and heritage surfaces have a 3D structure which requires the object or camera to be moved in order to keep the surface in focus. Moving the objects during imaging is often difficult for conservation or practical reasons, particularly for fragile or large objects.
Current techniques to create 3D models containing hyperspectral data rely on data fusion techniques, mapping image data on to a 3D model created using different sensors and scanning techniques. This research aims to develop a new scanning technique using two hyperspectral cameras in stereo configuration to extract spatial information directly from the hyperspectral images.
For 3D objects the camera will move freely in space, maximum freedom of movement can be enabled using an articulated robotic arm which will carry both the imaging equipment and the illumination system.

Sue Wolff

sue-wolffDevelopment of a robust methodology for assessing moisture in solid brick walls

UCL Institute for Environmental Design and Engineering / Historic EnglandGrosvenor

Moisture is universally acknowledged as the critical factor in almost all building problems, from deterioration of the materials and structure, to difficulties with building use (such as problems with mould and “dampness”). Nevertheless, there remain fundamental gaps in our understanding of how moisture travels into and around building fabric, and most particularly in our knowledge of the way water absorbed into and evaporated from permeable porous materials, and how it moves within the pores. This project aims to investigate the uptake of moisture into masonry in relation to its existing moisture “conditions”. The project will concentrate on solid masonry walls composed of brick and mortar: although this is a complex system, we do know from long-term observation that all such walls behave in roughly similar ways, despite the differences in materials and construction.

Centre for Doctoral Training in Science and Engineering in Arts Heritage and Archaeology